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Abstract

We evaluate two coordinate transformation techniques in combination with grid stretching for pricing basket options in a sparse
grid setting. The sparse grid technique is a basic technique for solving a high-dimensional partial differential equation. By creating
a small hypercube sub-grid in the ‘composite’ sparse grid we can also determine hedge parameters accurately. We evaluate these
techniques for multi-asset examples with up to five underlying assets in the basket.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The topic of this article is the accurate evaluation of basket option prices and the corresponding hedge parameters
with partial differential equations (PDEs). Basket options are exotic options, whose payoff functions are based on
more than one underlying asset. As the number of the underlying assets increases, the number of the dimensions
increases as well in the multi-dimensional pricing partial differential equation and the size of the discrete problem
grows exponentially. It is therefore necessary to use numerical techniques that are based on a relatively small number
of grid points but that also maintain a satisfactory accuracy.

The sparse grid method is employed here. It is based on a combination of solutions of smaller-sized problems in
order to approximate the full grid solution. This method is one of the key techniques for the numerical solution of high-
dimensional partial differential equations. The payoff function of a basket call option is, however, non-differentiable
or even discontinuous on any hyper-plane that is typically not parallel to a corresponding low-dimensional grid
hyper-plane. Therefore, a straightforward application of the sparse grid method may not work satisfactorily, as the
mixed derivatives are not bounded for this type of function which is a necessary requirement for the convergence
of sparse grid solutions. We show – especially through numerical experiments – that the combination of coordinate
transformation, grid stretching and the use of non-equidistant grids may result in satisfactory accuracy for basket call
prices with the sparse grid method. Parts of this work are inspired by the Ph.D. thesis work of C. Reisinger [14] (which
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is in German), in particular the combination of coordinate transformation, grid stretching and sparse grid technique.
We however compare two different coordinate transformations in this paper. A nonlinear transformation from [14] is
extended to allow for different continuous dividend yields. We further employ different numbers of grid points per
dimension, which is not standard in the sparse grid setting. The computation of the Greeks from each sub-grid in the
sparse grid method is not straightforward and therefore we present a technique for doing this accurately. Three types
of contracts are computed: a European basket call, a European digital call and a Bermudan basket put.

In Section 2, the basket option is discussed, the governing multi-dimensional Black–Scholes equation is presented
with its payoff function, i.e., its final condition, plus boundary conditions. The coordinate transformation and grid
stretching are presented in Section 3. Numerical implementation by the use of Kronecker products is described in
Section 4, the sparse grid technique in Section 5 and a method to extract the hedge parameters from the sparse grid
solution is in Section 6. Finally the numerical experiments and conclusions are in Sections 7 and 8, respectively.

2. Basket call options

A European plain vanilla call option is a contract which gives the holder the right to buy an underlying asset S for
a fixed price K at maturity time T , see, for example [2,10]. A basket call option contract gives the holder the right
to buy an underlying basket of assets for a fixed exercise price K . This type of option belongs to the so-called exotic
options. The payoff function of a European basket call is typically based on the weighted sum of the assets S1, . . . Sd
in the basket, and it reads

u(S, T ) = max

{
d∑

k=1

wk Sk − K , 0

}
, (1)

where wk are the percentages or the weights of the assets in the basket and S = (S1, S2, . . . , Sd) is a vector of d asset
prices. To price a basket call option with d underlying assets, the multi-dimensional Black–Scholes partial differential
equation is used, as derived in [12,21]

∂u

∂t
+

1
2

d∑
k=1

d∑
`=1

ρk`σkσ`Sk S`
∂2u

∂Sk∂S`
+

d∑
k=1

(r − δk) Sk
∂u

∂Sk
− ru = 0. (2)

In this equation, σk is the volatility of asset k, ρk` is the correlation between the assets k and `, r is the risk-free
interest rate, δk is the continuous dividend yield, t is the time (0 6 t 6 T ) and u is the option price. In this work the
underlying asset price dynamics is assumed to be the multi-dimensional geometric Brownian motion.

The PDE (2) is a second-order partial differential equation in d dimensions and the 2 times d boundary conditions
are mandatory. As the asset price domain is truncated Sk ∈ [0, Smax

k ], we first of all need a boundary condition at
Sk = 0. When using the reduced form of Eq. (2), where each coefficient belonging to a derivative with respect to Sk
vanishes at Sk = 0, a (d − 1)-dimensional partial differential equation remains at the boundary. This is called the
natural boundary condition in [14]. In particular, the boundary condition at S1 = 0 or S2 = 0 for a two-asset option
is represented by the well-known one-dimensional Black–Scholes equation for a vanilla option.

Also for Sk = Smax
k a boundary condition must be prescribed. If Smax

k is large enough, i.e.wk Smax
k � K , a linearity

condition can be applied, which means that the option price can be assumed to show a linear growth in that coordinate
direction. In this case we set the second derivative with respect to Sk equal to zero at that boundary, as in [18,19].
All other derivatives remain present (including the mixed derivatives). An appropriate size of the truncated domain is
important for this boundary condition not to have a negative effect on the option prices at the spot price and/or at the
exercise price K .

3. Coordinate transformation

Coordinate transformations – typically – are employed to transform a given PDE into another one whose solution
is easier to achieve. In basket option pricing an important reason for using a coordinate transformation is to simplify
the payoff function (1). This function is non-differentiable along a hyper-plane

∑d
k=1wk Sk = K in the d-dimensional

domain. This plane crosses the Cartesian Si -grid, which may hamper satisfactory accuracy of the so-called sparse
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grid combination technique, described in Section 5. A coordinate transformation from Sk to xi can be written in the
form

xi = fi (S1, S2, . . . , Sd) , (3)

Sk = f −1
k (x1, x2, . . . , xd) . (4)

We write xi = xi (S) and Sk = Sk(x) where S and x are d-dimensional vectors. If the transformations (3) and (4) are
applied to the partial differential equation (2), it changes into

∂u

∂t
+

d∑
i=1

d∑
j=1

αi j
∂2u

∂xi∂x j
+

d∑
i=1

βi
∂u

∂xi
− ru = 0, (5)

where

αi j =

d∑
k=1

d∑
`=1

ak`
∂xi

∂Sk

∂x j

∂S`
, (6)

βi =

d∑
k=1

d∑
`=1

ak`
∂2xi

∂Sk∂S`
+

d∑
k=1

bk
∂xi

∂Sk
, (7)

with ak` =
1
2ρk`σkσ`Sk(x)S`(x) and bk = (r − δk)Sk(x).

The new coordinate x1 is now chosen equal to the basket value

x1 =

d∑
k=1

wk Sk . (8)

With this coordinate the new payoff function reads

u(x, T ) = max{x1 − K , 0}. (9)

This transformed payoff function is only dependent on x1 and thus non-differentiable in only one coordinate direction.
It now makes sense, for example, to use a truncation of this coordinate as in the one-dimensional case presented in [11]

xmax
1 = K exp

(√
2σ 2T log 100

)
. (10)

We can, however, also safely use xmax
1 = 3K . With this important first coordinate after transformation, it may be

possible to reduce the number of points in the other coordinates, as stated in [14,18].
For the definition of the remaining coordinates, two basic choices are available: via a linear transformation or via a

nonlinear, normalized, transformation.

3.1. Linear coordinate transformation

A linear coordinate transformation can be written in the form

x = GS, (11)

with G the transformation matrix. The first row of matrix G is defined by the weights of the basket option. The other
coefficients are chosen as follows (see for example [18], Chapter 5)

gi j =

{
−w j j = i − 1, i 6= 1,
w j j 6= i − 1, i 6= 1 ∨ i = 1.

(12)

Applying (12) to (6) and (7) gives

αi j =

d∑
k=1

d∑
`=1

ak`gik g j`, βi =

d∑
k=1

bk gik . (13)



196 C.C.W. Leentvaar, C.W. Oosterlee / Journal of Computational and Applied Mathematics 222 (2008) 193–209

Note that ∂2xi/∂Sk∂S` = 0 with this transformation, because xi is linear in Sk . It is easy to see that coordinate
transformation (12) is nonsingular. The boundary conditions transform accordingly. Coordinate x1 is defined on
[0, xmax

]. At x1 = 0 all asset prices are zero and therefore the option price itself is also set to zero. This is a Dirichlet
condition. The linearity condition for x1 towards infinity remains valid; xmax

1 corresponds with
∑
wk Smax

k . For the
other coordinates xi , i 6= 1 we set linearity conditions on both the boundaries, as these transformed coordinates do
not have their left-hand boundaries at xk = 0. Therefore, it is not true in general that the coefficients of the particular
derivatives vanish, which implies that the use of the linearity conditions both at xi = xmin as on xi = xmax with i > 1
makes good sense.

3.2. Nonlinear transformation

It is also reasonable to employ a nonlinear transformation, with normalized coordinates x j , j > 1. By
normalization one can guarantee that the transformed coordinate directions remain in a (d − 1)-dimensional unit
hyper-cube. This transformation was developed for equally distributed basket put options (∀i, j wi = w j ) in [14,15].
With basket weights wk included, it reads

xi =



d∑
k=1

wk Sk i = 1,

wi−1Si−1

d∑
k=i−1

wk Sk

i > 1.
(14)

Correspondingly, we find the inverse transformation

Sk =



1
w1

x1x2 k = 1,

1
wk

x1xk+1

k∏
j=1

(1 − x j ) 1 < k < d,

1
wd

x1

d∏
j=1

(1 − x j ) k = d.

(15)

Again the sum of the weighted assets in the basket is used for the first coordinate. Before the new coefficients (6) and
(7) are derived, we define the following function

f̂ik :=



xk+1

k∏
j=i+1

(1 − x j ) i < k < d,

k∏
j=i+1

(1 − x j ) i < k = d,

xk+1 i = k < d,
1 i = k = d,
0 i > k.

(16)

Using (16), the coefficients (6) are transformed to

α11 = x2
1

d∑
k=1

d∑
`=1

ρ̂k` f̂1k f̂1`,

α1 j = x1x j (1 − x j )

d∑
k=1

d∑
`=1

(
ρ̂k, j−1 − ρ̂k`

)
f̂1k f̂ j`, ∀1 < j ≤ d,

αi j = xi (1 − xi )x j (1 − x j )

d∑
k=1

d∑
`=1

(
ρ̂k` − ρ̂i−1,` − ρ̂k, j−1 + ρ̂i−1, j−1

)
f̂ik f̂ j`, ∀1 < i, j ≤ d,
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with ρ̂k` = ρ̂`k =
1
2ρk`σkσ`, and αi j = α j i . The coefficients (7) now become

β1 =

d∑
k=1

(r − δk) f̂1k,

βi = xi (1 − xi )

(
r − δ1 −

d∑
k=1

(
(r − δk) f̂ik

))

+ xi (1 − xi )

(
d∑
`=1

(
−2ρ̂i−1,i−1xi + (2xi − 1)(ρ̂k,i−1 + ρ̂`, j−1)+ 2(1 − xi )ρ̂k`

)
f̂ik f̂i`

)
.

The boundary conditions for x1 are the same as in the case of the linear transformation. Furthermore, it can be
shown that αi j = 0 and β j = 0 for x j = 0 and x j = 1 with i > 1 and j > 1. This means that on these boundaries,
the coefficients of the derivatives with respect to x j vanish and the natural boundary conditions can again be applied.

We will compare the accuracy of basket option prices and hedge parameters after employing one of these grid
transformations. In addition we will evaluate the use of grid stretching, as described below.

3.3. Coordinate stretching

After applying one of the two transformation techniques, a non-differentiable payoff (or in the case of a digital,
discontinuous) function remains only along the x1-direction. Analytic grid stretching in this coordinate direction
represents a technique, which may cluster grid points in the region of interest and which can improve the accuracy of
the solution in the case of a payoff function that is discontinuous [5,18].

The coordinate x1 can be written as a function of the new coordinate y via the stretching function ψ . We need the
derivative of the grid function, ψ ′, and the second derivative ψ ′′. Eq. (5) changes to

∂u

∂t
+

d∑
i=2

d∑
j=2

α̂i j
∂2u

∂xi∂x j
+ α̂1(ψ

′(y))−2
(
∂2u

∂y2 −
ψ ′′(y)

ψ ′(y)

∂u

∂y

)

+ 2
d∑

i=2

α̂i1ψ
′(y)−1 ∂2u

∂xi∂y
+

d∑
i=2

β̂i
∂u

∂xi
+ β̂1ψ

′(y)−1 ∂u

∂y
− ru = 0. (17)

Note that α̂i and β̂i are now functions of the vector (ψ(y), x2, x3, . . . , xd)
t . The stretching function used in this paper,

from [18] reads

ψ(y) = K

(
1 +

1
15

sinh (c2 y + c1(1 − y))

)
, (18)

c1 = sinh−1 (15
(
xmin

− K
)
/K
)
, (19)

c2 = sinh−1 (15
(
xmax

− K
)
/K
)
, (20)

with 15/K a reference parameter.

4. Set-up of a matrix

A general form for Eq. (2), (5) or (17) is

∂u

∂t
+

d∑
i=1

d∑
j=1

αi j
∂2u

∂xi∂x j
+

d∑
i=1

βi
∂u

∂xi
− ru = 0, (21)

where we focus on the x-grid, for simplicity. For discretization of (21) Kronecker products, based on the one-
dimensional discrete operators are used to set up the multi-dimensional discrete equation.
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4.1. Difference stencils, Kronecker products

Eq. (21) contains three types of derivatives: first, second and the mixed derivatives. The latter will be constructed
by the use of a Kronecker product of the difference stencils of two first derivatives. For the other two derivatives, the
standard second-order central differences are used. We define a grid with Ni points per coordinate and with hi = N−1

i
as the mesh-size.

To reduce the overall number of grid points, high-order discretization stencils (O(h4) for example) would be a
choice, but as the final condition is non-differentiable, it is well-known [6,16] that these high-order central differences
without substantial enhancements do not result in the desired accuracy, but in at most second-order accuracy.
Therefore, we focus here on second-order accuracy for the tensor-product grid discretization (sparse grid accuracy
is typically somewhat lower, see Section 5).

For the boundary conditions only the first derivative needs to be discretized, because the second derivative is either
zero (linearity condition) or the coefficient in front is zero (natural condition) and thus this derivative vanishes. At the
boundary, where we can use a linearity condition as the boundary condition [18,19], we choose a backward difference
scheme for the first derivative

du

dxi

∣∣∣∣
1

=
−3u0 + 4u1 − u2

2hi
+ O(h2

i ), (22)

du

dxi

∣∣∣∣
N

=
3uN − 4uN−1 + uN−2

2hi
+ O(h2

i ). (23)

The Kronecker product [17], defined as in Definition 1, is the basis for the set-up of a matrix arising from a
d-dimensional PDE problem. The Kronecker products will be employed based on one-dimensional discretization
stencils.

Definition 1. Given matrix A of size k × ` and matrix B of size m × n, then the Kronecker product or tensor product
of A and B is a matrix C of size k · m × ` · n, which has the pattern:

C = A ⊗ B :=


a11 B a12 B · · · a1n1 B
a21 B a22 B · · · a2n1 B
...

...
...

am11 B am12 B · · · am1n1 B

 .
Furthermore, we define the repeated Kronecker product:

d⊗
m=1

Am := A1 ⊗ A2 ⊗ · · · ⊗ Ad .

Kronecker products are associative and non-commutative operations. The order is determined by the subscripts and
the associative hierarchy does not matter.

The grid ordering is important when using the Kronecker product. We use the standard lexicographical ordering of
the grid points. Consider a two-dimensional grid with 5 points for coordinate 1 and 4 points for coordinate 2. The grid
point vectors read [x (0)1 , x (1)1 , x (2)1 , x (3)1 , x (4)1 ] and [x (0)2 , x (1)2 , x (2)2 , x (3)2 ], respectively. If we use the Kronecker product
(with e the all-one vector), we obtain

(
ex2 ⊗ x1, x2 ⊗ ex1

)
=




1
1
1
1

⊗


x (0)1
x (1)1
x (2)1
x (3)1
x (4)1

 ,


x (0)2
x (1)2
x (2)2
x (3)2

⊗


1
1
1
1
1


 =



(x (0)1 , x (0)2 )
...

(x (4)1 , x (0)2 )

(x (0)1 , x (1)2 )
...

(x (4)1 , x (1)2 )
...


.
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We see that with the Kronecker products the lexicographical grid ordering is obtained and it is therefore possible to
set up a dimension-independent grid generating routine.

For the generation of the difference stencils, the same automatic scheme with these Kronecker products can be
used. For example the mixed derivative term in two dimensions can be written as:

∂2

∂x1∂x2
=

∂

∂x2

(
∂

∂x1

)
. (24)

In stencil notation, an example of the discretization of the mixed derivative reads

∂2

∂x1∂x2
|h1,h2

∧
=

1
4h1h2

 1 0 −1
0 0 0

−1 0 1

+ O(h2
1 + h2

2). (25)

We can write, according to (24)

∂

∂x2
⊗

∂

∂x1
=

−1/2h2
0

1/2h2

⊗
[
−1/2h1 0 1/2h1

]
=

1
4h1h2

 1 0 −1
0 0 0

−1 0 1

 , (26)

which is the same as (25).
If there are Nk points per coordinate, then the multi-dimensional grid function X i for coordinate i reads

X i =

d−1⊗
m=i

exd+i−m ⊗ xi ⊗

i−1⊗
m=1

exi−m , (27)

where exi is the all one vector of length Ni + 1. The grid points are presented in multi-dimensional representation,
X = [X1, X2, . . . , Xd ] of size

∏d
i=1(Ni +1)×d , as defined in (27). In Eq. (21), the coefficients αi j and βi are functions

of all grid points. We can now simply evaluate the coefficients αi j as a function of X, and obtain the multi-dimensional
representation of the coefficients.

If we want to express a stencil of a derivative with respect to coordinate i in a d-dimensional way, we use[
∂

∂xi

]d

=

d−1⊗
m=i

Id+i−m ⊗

[
∂

∂xi

]1

⊗

i−1⊗
m=1

Ii−m, (28)

where Im is the identity matrix of size (Nm + 1) × (Nm + 1) and [
∂
∂xi

]
d is the finite difference stencil of the first

derivative term in Eq. (21) in a d-dimensional representation. [
∂
∂xi

]
1 represents the discretized first derivative for

coordinate xi .
As of the grid ordering, the expression for the mixed derivative (∂2u/∂xi∂x j ) stencil with respect to i for j > i

reads [
∂2

∂xi∂x j

]d

=

d−1⊗
m= j

Id+ j−m ⊗

[
∂

∂x j

]1

⊗

j−1⊗
m=i+1

Ii+ j−m ⊗

[
∂

∂xi

]1

⊗

i−1⊗
m=1

Im . (29)

By the use of the point-wise row-product �, the matrix Ah in semi-discretized equation (31) reads

Ah =

d∑
i=1

d∑
j=1

αi j (X) �

[
∂2

∂xi∂x j

]d

+

d∑
i=1

βi (X) �

[
∂

∂xi

]d

− r
d⊗

m=1

Id+1−m . (30)

After discretizing the derivatives with respect to all xi we obtain a system
duh

dt
+ Ahuh + bh(t) = 0,

uh(x, T ) = u0
h .

(31)
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where uh is the discrete solution and Ah the matrix. Vector bh is the vector representing the values at the boundary
(if the boundary is a Dirichlet condition). For a basket put option, bh(t) is dependent on time t . We use the second-
order Crank–Nicolson method to integrate (31) in time. In principle one could also employ a stretching in the time
direction [7], for improved efficiency but this has not been pursued here. We need to solve a linear system Mu = v
for every time-step. The matrix M is a sparse matrix with 2 times d off-diagonals.

5. Sparse grids

Solving Eq. (21) on a tensor-product grid of size
∏d

i=1 Ni is an extensive work. Working on this tensor product,
the so-called full, grid consumes too much memory, when d increases. This is called the curse of dimensionality [1].
For example, the numerical solution of a five-asset option with 32 points per coordinate gives rise to more than 32
million points.

The sparse grid approach, developed in [3,20] is a technique that splits the full grid problem of N d points up into
layers of sub-grids. Each sub-grid represents a coarsening in one or more coordinates up to a minimal required number
of points. In the so-called sparse grid combination technique, the partial solutions that are computed on these grids,
are combined a-posteriori by interpolation to a certain point or region. The sparse grid solution corresponding to a
full grid solution on an equidistant grid of size N d , meaning that the mesh-size in each direction is h = N−1, is a
combination of d layers, where combination coefficients are determined by Newton’s binomial expression.

Consider a d-dimensional problem with mesh-sizes hi = N−1
i with Ni the number of grid points for coordinate i ,

1 6 i 6 d .

Definition 2. A multi-index Id belonging to a d-dimensional grid is a collection of numbers ni , i = 1, . . . , d, which
represent a d-dimensional grid with Ni grid points in coordinate i , with Ni = ci 2ni (ci some positive constant).

With the aid of the constants ci , it is possible to construct a non-equidistant grid.
According to Definition 2 the multi-index Id of an equidistant full grid with Nl points per coordinate reads

Id = {l, l, . . . , l}, with l the layer number (ci = 1, for example). If c1 6= c j (=cA), j > 1, then a non-equidistant grid
of size (c12l

× cA2l
× cA2l

× · · ·) can be constructed with Id = {l, l, . . . , l} and we have to give the vector elements
ci explicitly.

Definition 3. The sum of a multi-index |Id | is defined by

|Id | :=

d∑
i=1

ni . (32)

The full grid solution will be denoted by u f
l , indicating Nl points per coordinate direction; the sparse grid solution

after the combination will be denoted by uc
l and the exact solution by uE . Now, we can define [8]

Definition 4. The combined sparse grid solution uc
l corresponding to a full grid solution u f

l reads

uc
l =

l+d−1∑
m=l

(−1)m+1
(

d − 1
m − l

) ∑
|Id |=m

u f
Id
, (33)

with u f
Id

being the solution of the problem on a grid with multi-index Id such that |Id | equals m. This means that the

sparse grid solution uc
l mimics the full grid solution u f

l .
If the sub-grids are simply combined without any interpolation, which means that all the evaluated points in every

sub-grid are added with the binomial coefficients, we obtain the combined solution as schematically depicted in
Fig. 1(h) for the two-dimensional case.

The number of points of a d-dimensional problem in a full grid with ni = l reads

Nfull =

(
d∏

i=1

ci

)(
2l
)d
. (34)
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(a) 16 × 2. (b) 8 × 4. (c) 4 × 8. (d) 2 × 16.

(e) 8 × 2. (f) 4 × 4. (g) 2 × 8.

(h) Combined.

Fig. 1. Construction of a two-dimensional sparse grid; (a)–(d): grids on layer 5, (e)–(g): grids on layer 4; (h) combined sparse grid solution.

From Eq. (33) it follows that the number of problems to be solved in the sparse grid technique reads

Zl,d =

l+d−1∑
m=l

(
m − 1
d − 1

)
=

l

d

(
l + d − 1

d − 1

)
−

l − d

d

(
l − 1
d − 1

)
. (35)

Furthermore, the number of points employed for a grid with |Id | = m reads

N|Id |=m =

(
d∏

i=1

ci

)
2m . (36)

Combining (35) and (36) results in the total number of points employed within the sparse grid technique

Nl,total =

l+d−1∑
m=l

N|Id |=m

(
m − 1
d − 1

)
=

(
d∏

i=1

ci

)
l+d−1∑

m=l

(
m − 1
d − 1

)
2m . (37)
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It is known that the error of the discrete solution from a second-order finite difference scheme of the Laplacian can
be split [9] as

u f
l − uE = C1(x1, h1)h

2
1 + C1(x2, h2)h

2
2 + D(x1, h1, x2, h2)h

2
1h2

2. (38)

With the combination technique as in Definition 4 and the splitting in (38), the absolute error, which is dimension-
dependent, reads [4],

εl = |uc
l − uE | = O(h2

l (log2 h−1
l )d−1), (39)

for the Laplacian. As we use, in the experiments to follow, a higher number of grid points on the coarsest grids by
using the vector c, the influence of the logarithmic term in (39) is less pronounced. The convergence ratio in the case
where hl = c−1

× 2−l reads:

εl

εl+1
=

h2
l

(
log2 h−1

l

)d−1

h2
l+1

(
log2 h−1

l+1

)d−1 = 4
(

l + log2 c

l + 1 + log2 c

)d−1

. (40)

For the non-equidistant case, the value for c taken would be the value for the first coordinate, because this coordinate
is dominating. In our numerical experiments we will use a factor of c = 4 in the equidistant case and c = 16 in the
non-equidistant case.

6. Hedge parameters

The Greeks are the derivatives of the option price. In this paper, we concentrate on ∆k , the first derivative w.r.t.
asset price k, Γk,k , the second derivative of the price and the correlation parameter Γk,`, (k 6= `), based on the mixed
derivative of the price. We use numerical differentiation of the solution originating from the sparse grid combination
technique to obtain these Greeks. When using transformation and stretching the equations for ∆k and Γk,` read

∆k =
∂u

∂Sk
=

d∑
i=1

∂u

∂xi

∂xi

∂Sk
, (41)

Γk,` =
∂2u

∂Sk∂s`
=

d∑
i=1

∂u

∂xi

∂2xi

∂Sk∂S`
+

d∑
i=1

d∑
j=1

∂2u

∂xi∂x j

∂xi

∂Sk

∂x j

∂S`
. (42)

In higher dimensions, we typically do not have the complete solution on the whole domain available, as we work with
only a set of sparse grid solutions. The solution of the PDE on a region in the d-domain can, however, be obtained
relatively easy by interpolation of the sparse grid solutions.

Consider a point x = x0, where we wish to evaluate the option price u, ∆k and Γk,`. Then from each sub-grid we
interpolate the solution to a part of the finest full grid of size N d

R . This means a successive interpolation to N d
R points.

The combination of all sub-grids is then straightforward, because we need to combine the interpolated solutions to the
part of the finest grid. After this combination of solutions, we apply numerical differentiation for obtaining the Greeks
on the relevant part of the finest grid. Schematically this is depicted in Fig. 2.

As we use a higher-order Lagrange interpolation for this purpose, we need 4 × d points adjacent to point x0. The
point x0 is placed in the middle of the region of interest. On each side of x0, we thus need two adjacent points for the
first and second derivatives and four adjacent points for the mixed derivative.

7. Numerical experiments

The discrete multi-dimensional Black–Scholes equation is solved for European basket call options (Section 7.1),
European digital basket call options (Section 7.2) and Bermudan basket put options (Section 7.3) defined on three,
four and five assets. The aim here is to evaluate numerically the spatial accuracy achieved by the numerical techniques
presented above. In the test experiments, the time-step is fixed at δt = 10−3. The upper bound of the domain for the
asset prices is Smax

i = 3K . As in our test experiments we do not use more than 256 points per coordinate direction,
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Fig. 2. Representation of the interpolated ΩR from the sparse grid.

Table 1

Three-asset option with the three formulations on an equidistant full grid of (2l+2
× 2l+2

× 2l+2), c1 = c2 = c3 = 4

l Eq. (2) Eqs. (5) and (12) Eqs. (5) and (14) #unknowns
Price Error Price Error Price Error

1 12.8618 3.83 × 10−1 13.9367 6.92 × 10−1 13.9042 6.59 × 10−1 512
2 13.1501 9.48 × 10−2 13.1957 4.92 × 10−2 13.1731 7.18 × 10−2 4 096
3 13.2214 2.35 × 10−2 13.2355 9.35 × 10−3 13.2319 1.30 × 10−2 32 768
4 13.2390 5.85 × 10−3 13.2416 3.28 × 10−3 13.2408 4.08 × 10−3 262 144
5 13.2434 1.46 × 10−3 13.2441 7.68 × 10−4 13.2439 9.59 × 10−4 2 097 152

the error of the time integration, O(δt2), is negligible compared to the spatial discretization error, O(h2). So, in these
model experiments we focus on the sparse grid spatial accuracy and neglect the effect of a discretization in time.

7.1. European basket call options

Three-dimensional full grid computations for a three-asset option are used as a reference to evaluate the influence
of the coordinate transformation, the grid stretching, the use of fewer points in certain grid directions and the use of
sparse grids. For the sparse grid computation, the layer number l is used to compare the sparse and full grid solutions
and hedge parameters. Four- and five-asset options are computed with the techniques preferred from the three-asset
reference computations. The option parameters used in the experiments can be found in the Appendix. The spot price
is chosen to be S1 = S2 = S3 = K (so

∑3
k=1wk Sk = 1/3

∑3
k=1 Sk = K ). The reference value u (spot) = 13.2449

is computed by using an accurate FFT-based pricing technique [13]. In Table 1, option prices obtained on a three-
dimensional equidistant full grid are presented for the original formulation of the basket option pricing PDE (1), (2)
as well as for the two types of transformations (linear and nonlinear). The total number of unknowns employed can
be computed with (34) and is shown in the last column of the table. In the experiments with equidistant grids we have
set ci = 4, 1 ≤ i ≤ 3. The errors in Table 1 are computed as the absolute error between the computed value and
u(spot). We see in Table 1 that the use of only a grid transformation does not lead to improved accuracy on a full grid,
as expected. Furthermore, the accuracy improves by a factor 4 with decreasing mesh sizes, which is also expected.

In Table 2, we can observe an interesting improvement in accuracy with the two coordinate transformations when
non-equidistant grids are used with c1 = 16 and ci = 4, i = 2, 3. Four times fewer points have been used in these
tests. Whereas the accuracy without transformation is worse compared to the results in Table 1, the effect of coordinate
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Table 2

Three-asset option on a non-equidistant full grid of size (2l+4
× 2l+2

× 2l+2), c1 = 16, c2 = c3 = 4

l Eq. (2) Eqs. (5) and (12) Eqs. (5) and (14) #unknowns
Price Error Price Error Price Error

1 13.0982 1.47 × 10−1 13.2406 4.27 × 10−3 13.2321 1.28 × 10−2 2 048
2 13.2071 3.78 × 10−2 13.2427 2.24 × 10−3 13.2409 4.02 × 10−3 16 384
3 13.2355 9.38 × 10−3 13.2444 5.10 × 10−4 13.2440 9.46 × 10−4 131 072
4 13.2426 2.34 × 10−3 13.2448 1.35 × 10−4 13.2447 2.43 × 10−4 1048 576

Table 3

Three-asset option with the three formulations on a regular sparse grid, representing a (2l+2
× 2l+2

× 2l+2)-grid c1 = c2 = c3 = 4

l Eq. (2) Eqs. (5) and (12) Eqs. (5) and (14)
Price Error Price Error Price Error

1 12.8618 3.83 × 10−1 13.9367 6.92 × 10−1 13.9042 6.59 × 10−1

2 13.4397 1.95 × 10−1 13.1977 4.72 × 10−2 13.1732 7.17 × 10−2

3 13.1502 9.47 × 10−2 13.2368 8.05 × 10−3 13.2320 1.29 × 10−2

4 13.3256 8.07 × 10−2 13.2422 2.73 × 10−3 13.2409 4.04 × 10−3

5 13.2297 1.52 × 10−2 13.2443 6.34 × 10−4 13.2440 9.47 × 10−4

6 13.2329 1.20 × 10−2 13.2447 1.72 × 10−4 13.2447 2.42 × 10−4

Table 4

Three-asset option with the two coordinate transformation methods on a non-equidistant sparse grid, representing a (2l+4
× 2l+2

× 2l+2)-grid,
c1 = 16, c2 = c3 = 4

l Eqs. (5) and (12) Eqs. (5) and (14)
Price Error Price Error

Without stretching
1 13.2406 4.27 × 10−3 13.2321 1.28 × 10−2

2 13.2426 2.30 × 10−3 13.2409 4.01 × 10−3

3 13.2444 5.03 × 10−4 13.2440 9.40 × 10−4

4 13.2448 1.39 × 10−4 13.2447 2.41 × 10−4

With stretching
1 13.2648 1.99 × 10−2 13.2592 1.43 × 10−2

2 13.2485 3.60 × 10−3 13.2474 2.52 × 10−3

3 13.2456 7.18 × 10−4 13.2453 4.47 × 10−4

4 13.2449 3.68 × 10−5 13.2448 9.61 × 10−5

transformation is positive in this respect. The size of the grid at layer number 3 is 128 × 32 × 32. This solution is
comparable to the solution on the 128 × 128 × 128 grid from Table 1.

Results obtained with the sparse grid technique, corresponding to those in Tables 1 and 2, are presented in Table 3,
for the equidistant case, and in Table 4, for the non-equidistant finest grids.

We observe the negative effect of the payoff function being not aligned to a grid line on the sparse grid accuracy
in the second and third columns of Table 3, where the results with the original non-transformed grid are presented.
The need to align the payoff function with a grid line can clearly be observed as the methods based on transformed
coordinates show a very satisfactory accuracy.

We further notice that there is no significant difference between the linear and nonlinear coordinate transformations.
In Table 4, grid stretching (18) is also included. A slightly better result is observed by using the stretching. It shows,
however, that the reduction of grid points in the other (not the first) directions, by the choice for non-equidistant grids,
is much more significant than the additional stretching of the first coordinate. The accuracy is dictated by the fewer
grid points in the directions 2 and 3. Moreover, a fixed analytic grid stretching does often not place the clustered
points at the desired position for accuracy in the Greeks. The Greeks need not have their largest gradients near the
exercise price. The errors in the hedge parameters presented in Table 5 are computed as the difference between the
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Table 5
Greeks of the three-asset option on a non-equidistant sparse grid

l ∆1 (41) Error Γ1,1 (42) Error Γ1,2 (42) Error

Nonlinear transformation
3 0.1960 1.5889 × 10−3 1.4627 × 10−3

4 0.1968 8.28 × 10−4 1.5882 × 10−3 8.28 × 10−4 1.4603 × 10−3 2.41 × 10−6

5 0.1970 1.71 × 10−4 1.5880 × 10−3 6.57 × 10−4 1.4597 × 10−3 5.85 × 10−7

6 0.1970 4.50 × 10−5 1.5879 × 10−3 1.26 × 10−4 1.4596 × 10−3 1.27 × 10−7

Nonlinear transformation and stretching
1 0.1981 1.5817 × 10−3 1.4542 × 10−3

2 0.1973 7.81 × 10−4 1.5862 × 10−3 7.88 × 10−4 1.4580 × 10−3 3.781 × 10−6

3 0.1971 1.97 × 10−4 1.5872 × 10−3 5.92 × 10−4 1.4588 × 10−3 8.06 × 10−7

4 0.1970 4.92 × 10−5 1.5874 × 10−3 1.47 × 10−4 1.4590 × 10−3 2.04 × 10−7

values of two preceding layers, i.e.: |vl+1 − vl | where vl corresponds to a hedge parameter on layer l. The difference
in accuracy between a linear or a nonlinear transformation is negligible. The grid stretching slightly decreases the
Greek’s accuracies. We conclude that the use of grid stretching does not really pay off in these model examples.

An interesting notion is about the number of grids that we need to evaluate with sparse grids. Because of the choice
of the ci (c1 = 16, c2 = c3 = 4), the layer number l can be chosen differently in the Tables 3 and 4 and therefore
the number of grids employed is different. The number of grids for the equidistant case using Eq. (35) is 46, whereas
for the non-equidistant case it is only 19. This is because in the latter case, the sparse grid evaluation is based on a
32 × 8 × 8-grid rather than on an 8 × 8 × 8-grid. The finest grids in both cases have 214 points and therefore the
non-equidistant has a lower complexity than the equidistant case.

For the four- and five-asset option examples discussed next, we evaluate the coordinate transformation with and
without grid stretching. The non-equidistant grids are also employed. For the five-asset basket call we focus only
on the nonlinear transformation. In the Tables 6 and 7, the results of these two option contracts are presented. The
errors are computed as the difference between the option values in the point Si = K ∀i in two preceding layers. We
observe that the non-equidistant grid also leads to very satisfactory accuracy here. The determination of the hedge
parameters also works fine in higher dimensions. Grid stretching again does not seem to be necessary for obtaining
small truncation errors. Note that the reason for a slight decrease in the grid convergence of the four-dimensional and
the five-dimensional sparse grid solutions is due to the term (log(h−1

l ))d−1 in Eq. (38).

7.2. Digital options

The techniques presented can also be used for pricing options with discontinuous payoff functions. An example is
the digital basket option. The payoff function of a digital basket call reads:

u(S, T ) =

1 if
d∑

i=1

wi Si > K

0 elsewhere.

(43)

The discontinuity is not aligned with a grid line without transformation. Here, other option parameters are chosen,
in particular, a shorter time to maturity (leading to solutions with steep gradients), see the Appendix. In Table 8, the
results for a digital basket call are presented. Again, the errors are computed as the difference between the option
values in the point Si = K ∀i in two preceding layers. As expected, we observe a lower convergence of O(h) due
to the discontinuity, but the accuracy is still satisfactory. The grid stretching gives the same error convergence, but a
more accurate result. It is a helpful technique in the case of solutions with steep gradients.

7.3. Early exercise

We conclude the experiments with a – highly correlated – Bermudan put option. Also the weight parameters
in this option are chosen differently (see the Appendix). A Bermudan put gives the holder the right to exercise at



206 C.C.W. Leentvaar, C.W. Oosterlee / Journal of Computational and Applied Mathematics 222 (2008) 193–209

Table 6
Four-asset option price, ∆1 and Γ1,1

l Price Error ∆1(41) Error Γ1,1(42) Error

Four-dimensional linear, no stretching
1 13.6720 0.1450 8.6973 × 10−4

2 13.6618 1.0266 × 10−2 0.1455 5.3596 × 10−4 8.7153 × 10−4 1.8062 × 10−6

3 13.6597 2.0656 × 10−3 0.1457 1.3006 × 10−4 8.7310 × 10−4 1.5607 × 10−6

4 13.6590 6.6128 × 10−4 0.1457 4.3688 × 10−5 8.7349 × 10−4 3.9636 × 10−7

Four-dimensional linear and stretching
1 13.6855 0.1464 8.6942 × 10−4

2 13.6642 2.1301 × 10−2 0.1459 4.9735 × 10−4 8.7176 × 10−4 2.3415 × 10−6

3 13.6597 4.4289 × 10−3 0.1458 1.3399 × 10−4 8.7288 × 10−4 1.1237 × 10−6

4 13.6586 1.1454 × 10−3 0.1457 3.3631 × 10−5 8.7313 × 10−4 2.4849 × 10−7

Four-dimensional nonlinear
1 13.6471 0.1450 8.7344 × 10−4

2 13.6551 8.0568 × 10−3 0.1456 5.6144 × 10−4 8.7362 × 10−4 1.8754 × 10−7

3 13.6580 2.8561 × 10−3 0.1457 1.1662 × 10−4 8.7363 × 10−4 7.2636 × 10−9

4 13.6586 6.4266 × 10−4 0.1457 3.0644 × 10−5 8.7365 × 10−4 1.6688 × 10−8

Four-dimensional nonlinear and stretching
1 13.6705 0.1465 8.7008 × 10−4

2 13.6605 9.9860 × 10−3 0.1459 5.7513 × 10−4 8.7256 × 10−4 2.4738 × 10−6

3 13.6588 1.6815 × 10−3 0.1458 1.4322 × 10−4 8.7310 × 10−4 5.4651 × 10−7

4 13.6584 4.4404 × 10−4 0.1457 3.5827 × 10−5 8.7324 × 10−4 1.3813 × 10−7

The sparse grid solution mimics a (2l+4
× 2l+2

× 2l+2
× 2l+2)-grid, c1 = 16, c2 = c3 = c4 = 4.

Table 7
Five-asset option price, ∆1 and Γ1,1

l Price Error ∆1 (41) Error Γ1,1 (42) Error

Nonlinear transformation, no grid stretching
1 12.6697 0.1176 6.0568 × 10−4

2 12.6788 9.1126 × 10−3 0.1181 5.3724 × 10−4 6.0556 × 10−4 1.1569 × 10−7

3 12.6821 3.2759 × 10−3 0.1182 1.0939 × 10−4 6.0549 × 10−4 7.3138 × 10−8

4 12.6829 7.4950 × 10−4 0.1182 2.8927 × 10−5 6.0548 × 10−4 8.3213 × 10−9

Nonlinear transformation and stretching
1 12.6997 0.1189 6.0329 × 10−4

2 12.6863 1.3420 × 10−2 0.1184 4.9556 × 10−4 6.0494 × 10−4 1.6557 × 10−6

3 12.6838 2.4362 × 10−3 0.1183 1.2326 × 10−4 6.0527 × 10−4 3.3178 × 10−7

4 12.6832 6.3432 × 10−4 0.1182 3.0835 × 10−5 6.0536 × 10−4 8.3943 × 10−8

The sparse grid solution mimics a full grid of (2l+4
× 2l+2

× 2l+2
× 2l+2

× 2l+2) points, c1 = 16, c2 = c3 = c4 = c5 = 4.

discrete moments prior to the maturity date. In this experiment 10 exercise dates are allowed, which are equally spaced
along the duration of the option contract. At each exercise date, the option value is the maximum of the computed
value at the current date tm and the payoff function: u(S, tm) = max{u(S, T ), u(S, tm)}. In Table 9, we present the
results of the computation with up to 5 underlying assets. We observe a satisfactory accuracy for all option contracts,
although the convergence is irregular. This may be due to the correlation coefficients and early exercise. The nonlinear
transformation works well for this case.

Although the results of these experiments give positive results for the use of sparse grids for basket options, it also
gives rise to some serious thoughts on the applicability of the sparse grid method. Satisfactory sparse grid accuracy can
be achieved for options whose payoff function coincides with a grid line after a coordinate transformation. This may,
however, not be easily possible for complex payoff functions, as they are usually encountered in the financial industry.
For those there is little hope for satisfactory sparse grid accuracy without any additional enhancements (making the
method more complicated).
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Table 8
Digital basket call option with 3, 4 and 5 underlying assets

l Three-dimensional Four-dimensional Five-dimensional
Price Error Price Error Price Error

Nonlinear transformation, no stretching
1 0.5426 0.5591 0.5680
2 0.4548 8.7831 × 10−2 0.4511 1.0802 × 10−1 0.4411 1.2498 × 10−1

3 0.4960 4.1248 × 10−2 0.5004 4.9322 × 10−2 0.4971 5.6028 × 10−2

4 0.4757 2.0286 × 10−2 0.4763 2.4098 × 10−2 0.4699 2.7174 × 10−2

Nonlinear transformation, stretching
1 0.4836 0.4858 0.4806
2 0.4703 1.3379 × 10−2 0.4699 1.5939 × 10−2 0.4627 1.7953 × 10−2

3 0.4770 6.6910 × 10−3 0.4779 7.9018 × 10−3 0.4715 8.8683 × 10−3

4 0.4803 3.3539 × 10−3 0.4818 3.9716 × 10−3 0.4760 4.4551 × 10−3

The sparse grid solution mimics a full grid of 2l+4 points in the first direction and 2l+2 in the other directions.

Table 9
10-times exercisable Bermudan basket put option with 3, 4 and 5 underlying assets

Nonlinear transformation, no stretching

l Three-dimensional Four-dimensional Five-dimensional
Price Error Price Error Price Error

3 10.3649 10.0422 10.3437
4 10.3697 4.7423 × 10−3 10.0463 4.0829 × 10−3 10.3486 4.8573 × 10−3

5 10.3702 5.2147 × 10−4 10.0475 1.1571 × 10−3 10.3491 4.7073 × 10−4

6 10.3704 1.8426 × 10−4 10.0475 2.0129 × 10−5 10.3495 4.1991 × 10−4

The sparse grid solution mimics a full grid of 2l+4 points in the first direction and 2l+2 in the other directions.

8. Conclusion

For pricing basket options with the multi-dimensional Black–Scholes equation a linear or a nonlinear coordinate
transformation can be employed, in order to align the payoff function to a grid line. An additional stretching function
concentrates points in the region around the exercise price. With the coordinate transformations it is possible to reduce
the number of grid points in the xi , i > 1 coordinates, which is highly advantageous. The effect of grid stretching is
mainly significant on these non-equidistant grids if the maturity time is short (as then steep gradients in the solution
occur). With the coordinate transformation the sparse grid combination technique can be efficiently employed to
achieve very satisfactory grid accuracy in space. A significant reduction in the number of sparse grids that need to be
processed can be achieved by a clever definition of the base grid. For the model problems evaluated, the difference
in the accuracy between the linear or the nonlinear coordinate transformations is not significant. This includes the
evaluation of the hedge parameters. Both the linear and the nonlinear transformation perform very well. The nonlinear
transformation gives rise to a basket option problem with easier boundary conditions. A critical observation is about
the generality of the sparse grid method in multi-asset option pricing. For highly complicated payoff functions that
typically cannot be transformed to a low-dimensional hyper-plane the efficient use of sparse grids may be seen with
some hesitation. The transformation also works for options with discontinuous payoff functions and options with early
exercise.
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Appendix. Option parameters

The chosen option parameters in the computation are presented in this appendix.
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Standard basket call option

These parameters are used in Section 7.1 for the experiments presented in Tables 1–7.

K = 100 r = 4% T = 1

σ =
(
0.3 0.35 0.4 0.45 0.25

)

ρ =


1.0 0.5 0.5 0.5 0.5
0.5 1.0 0.5 0.5 0.5
0.5 0.5 1.0 0.5 0.5
0.5 0.5 0.5 1.0 0.5
0.5 0.5 0.5 0.5 1.0


δi = 0 wi = 1/d.

Digital basket call option

These parameters are used in Section 7.2 for the experiments presented in Table 8.

K = 100 r = 5% T = 0.25 (=3 months)

σ =
(
0.30 0.35 0.40 0.33 0.27

)

ρ =


1.00 0.50 0.25 0.17 0.10
0.50 1.00 −0.25 −0.65 −0.30
0.25 −0.25 1.00 0.50 0.45
0.17 −0.65 0.50 1.00 0.07
0.10 −0.30 0.45 0.07 1.00


δ =

(
0.02 0.03 0.06 0.04 0.07

)
wi = 1/d.

Bermudan basket put option

These parameters are used in Section 7.3 for the experiments presented in Table 9.

K = 50 r = 5% T = 0.25

σ =
(
0.41 0.38 0.39 0.37 0.42

)

ρ =


1.00 0.95 0.90 0.86 0.81
0.95 1.00 0.95 0.90 0.86
0.90 0.95 1.00 0.95 0.90
0.86 0.90 0.95 1.00 0.95
0.81 0.86 0.90 0.95 1.00


δ =

(
0.02 0.03 0.06 0.04 0.07

)
w3D =

(
0.45 0.30 0.25

)
w4D =

(
0.4 0.2 0.1 0.3

)
w5D =

(
0.32 0.28 0.18 0.10 0.12

)
.
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